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Figure I - Regional setting, major tec:tonic elements, and petroleum provinces of the 
Williston Basin. Basitiform-lines are indicated tliugrammaticully over limited portions 
of the basin by the depth to the base of the Carboniferous Matlison Group. F, inferred 
faults in the Precambrian basement. 

1. Introduction 

In this paper, the Williston Basin 
proper (Figure 1) is recognized as 
the sub-circular epicratonic 
Phanerozoic basin, approximately 
800 km in diameter, that is 
located within the Williston Basin 
region, a more extensive area of 
Phanerozoic strata in Manitoba, 
Saskatchewan, and the adjacent 
USA (Gerhard et al., 1982). This 
distinction between the Williston 
Basin proper and the Williston 
Basin region reflects a 
stratigraphic continuity that 
extends well beyond the 
epicratonic basin (Burgess el al., 
1997) . The Williston Basin 
region overlies the 
Paleoproterozoic coll isional 
Trans-Hudson Orogen, as well as 
the margins of the Archean 
Superior and Hearne/Wyoming 
cratons (Burwash et al., 1994; 
Leclair et al., 1997). It contains 
several significant petroleum 
provinces and mineral deposits 
which are randomly distributed 
both geographically and 
stratigraphically (e.g. Burrus e l 
al., 1996). 

Apatite fission-track (AFT) 
thermochronology and organic 
maturity data (Crowley et al., 
I 985; Crowley and Kuhlman, 
1988; Kohn et al., 1995; Osadetz 
et al. , 1998) indicate spatial and 
temporal variations in the thermal 
history of the Williston Basin and 
adjacent Precambrian Shield of 
North America (Figures I and 2). 
On the Canadian Shield and 
under areas of the Williston Basin 
region which have thin 
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Figure 2 - Best match thermal history models for Group I 
(A), u11disturbed exposed Shield or shallowly buried 
Williston Basin region, and Group II (8), deeply buried 
Williston Basin proper, samples as defined by Osadetz et al. 
(/998). Models for Group I samples record regional late 
Precambrian cooling, whereas Group II models commence 
with late Paleozoic cooling. Note the similarity of 
Mesozoic and Cenozoic thermal histories for both groups of 
samples. 

Phanerozoic cover, AFT data typically record late 
Precambrian cooling followed by intervals of 
Phanerozoic heating and cooling, the pattern of which 
mimics the Phanerozoic sedimentation history. 
Elsewhere, the earlier thermal history is overprinted by 
resetting of AFT clocks during the Late Paleozoic. The 
region affected by this Late Paleozoic thermal event 
includes both a broad portion of the "central basin", 
extending more than 300 km from the bas in centre 
where the Phanerozoic succession is up to 5 km thick, 
and a linear zone, at shallower depths, stretching from 

the Williston to Athabasca basins (Figure 2). It thus 
broadly conforms to the area occupied by the Devonian 
Elk Point Basin. 

2. Interpretation 

Our analysis distinguishes the Late Paleozoic event 
extending into the Williston Basin region from the 
Early Paleozoic origin of the Williston Bas in proper 
(Figures 3 and 4). We infer that the Williston Basin 
proper fonned as the result of at least two distinct 
thermo-mechanical processes. Initial Ordovician
Silurian subsidence is generally contemporaneous with 
the initial subsidence of other North American 
intracratonic basins (Sloss, 1984). It has been attributed 
by Hamdani et al. (1994), Ahern and Mrkvicka ( 1984), 
and others to the thennal contraction of a large sill 
intruded into the lower crust. An upward migration of 
the Iithosphere-asthenosphere boundary (LAB) in 
Devonian time provides a plausible mechanism for 
linking Late Paleozoic and Early Mesozoic tectonic 
events in the Williston Basin region. These events 
include accelerated Middle Devonian to Carboniferous 
subsidence, Late Paleozoic increase in basal heat flow, 
followed by Late Paleozoic to Early Mesozoic uplift 
and erosion. They were succeeded by Triassic and 
Jurassic subsidence signifying the decay of the heat 
flow anomaly. Whereas accelerated Devonian
Carboniferous subsidence and the Late Paleozoic 
thermal event took place in essentially the area of the 
Devonian Elk Point Basin, Early Mesozoic subsidence 
was restricted to that region where the Elk Point and 
Williston basins are superimposed. This restriction of 
Triassic-Jurassic subsidence to the region of the 
Williston Basin proper is inferred to indicate a 
mechanical response, probably a phase change, 
involving the igneous sill responsible for the initial 
Ordovician-Silurian subsidence of the Williston Basin. 

We conclude that the accelerated Devonian
Carboniferous subsidence and the succeeding Late 
Paleozoic thennal event are both responses to thennal 
thinning of the continental lithosphere, temporally 
separated by the thennal inert ia of the continental 
lithosphere. The differing response between areas 
within the Williston Basin proper, and those outside, 
may be due to the effects o f Late Paleozoic heating on 
the intrusion inferred responsible for initiating 
Williston Basin subsidence in Early Paleozoic time 
(Ahem and Mrkvicka, 1984). Therefore the orig in and 
pattern of Williston Basin subsidence is inferred to be 
episodic and fortuitous as opposed to continuous and 
discrete. Other epicratonic basins (e.g. Illinois Basin) 
exhibit either accelerated subsidence or thermal 
anomal ies in Late Paleozoic time (e.g. Kominz and 
Bond, 199 I). Together these may define a previously 
unrecognized, but widespread and coordinated 
interaction with the subl ithospheric mantle. A final 
phase of subsidence contemporaneous with the 
formation o f the Cretaceous-Paleogene Interior Seaway 
and Laramide Orogeny ( Figure 3) may be due to other 
processes interacting with pre-existing lithospheric 
structure (Burgess e t al., 1997), but without a change 
in basa l heat flow (Figure 4). 
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Figure 3 - Representative Williston Basin burial history 
model similar to that used to co11strai11 thermal history 
models. Notice the acceleration of subsidence 
accomp11nying Kaskaskia/I and Forela11d Basin 
setlime11tation in the Late Paleowic a11d Early Mesozoic, 
respectively. Comparison with Figure 2 indicate.~ that the 
total resetting of AFT clocks during the Late Paleozoic 
precedes maximum burial in the Paleogene, a clear 
indication that basal heat flow wa.\" higher in the Late 
Paleozoic than in the Paleogene. 
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Figure 4 - Generalized thermal history models for Group I 
(undisturbed exposed Shield or shallowly buried Williston 
Basin region}, G'roup JI (deeply buried Williston Basin 
proper), and select Group JI/ (High Rock Lake and Lake 
St. Martin impact crater s,unples generally restricted to the 
eastern limits of Williston Basin region, as deji11ed by Kohn 
el al., /995) sample locatio11s. Group JI is distinguished 
from Group I by the total resetting of AFT clocks in L11te 
Paleozoic time. Notice that the subselfuent history of Group 
II and Group Ill samples is similar to that of Group J 
samples during the Mesozoic and Cenozoic. 
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3. Implications for Petroleum Systems 

The Late Paleozoic thermal event identified in this 
study has great sign ificance for potential petroleum 
systems in the Sauk and Tippecanoe sequences, both of 
which reached the oil window for Type II organic 
matter at that time (Osadetz et al., 1998). Within the 
region affected by the Late Paleozoic thermal event is a 
persistent region of elevated heat flows associated with 
crustal structure, specifically the North American 
Central Plains Conductivity Anomaly (NACPCA) and 
the Nesson Anticline (Majorowicz et al., 1988; Figure 
I). Along the Nesson Anticline, oil windows in 
Paleozoic strata occur 750 to 1250 m higher in 
comparison to other regions affected by the Late 
Paleozoic heating (Osadetz et al., 1989). This 
persistent geographical heat flow variation is attributed 
to crustal compositional differences originating during 
the Precambrian Trans-Hudson Orogeny (Morel-a
l'Huissier et al., 1990). Together these effects suggest 
early opportunities for hydrocarbon generation, 
migration and entrapment in the Williston Basin which 
are not indicated by analysis of the Devonian and 
Carboniferous petroleum systems alone (Osadetz et al. , 
1998). 
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