REPORT No. 112

A Preliminary Report of
URANIUM DEPOSITS
in the
ATHABASCA REGION
Saskatchewan

by
L. S. BECK
1967

DEPARTMENT OF MINERAL RESOURCES
Geological Sciences Branch
Precambrian Geology Division

HON. A. C. CAMERON
Minister

J. T. CAWLEY
Deputy Minister

PROVINCE OF SASKATCHEWAN
ABSTRACT

This report presents a systematic list, together with location maps, of all uranium occurrences, known to the Saskatchewan Department of Mineral Resources, in the Athabasca region.

The occurrences are grouped into several main types according to their mineralogy and geological setting. Epigenetic pitchblende deposits form the most important group and consist of 284 separate occurrences. Of these, 40 were explored underground during the period 1948-53 and this resulted in outlining 2 major orebodies and 17 minor ore zones. Other types of occurrence are: uraninite in country rock; uranium-bearing pegmatites; and secondary deposits of autunite. To date none of these have proven to be economic, although appreciable tonnages of low-grade uranium-bearing pegmatite have been outlined.

The region forms part of the Churchill province of the Canadian Shield and is underlain by a Precambrian assemblage of metamorphosed and granitized rocks. Two main types of structural and geological environment are recognized: (1) stable blocks with only minor faulting and little or no mylonitization of the bedrock; and (2) linear belts, characterized by tight and isoclinal folding, intense faulting, brecciation, and mylonitization.

Radiometric and structural data indicate that the linear belts were intensely mylonitized and faulted and intruded by granite during the Hudsonian orogeny (1700-1800 m.y. ago) in contrast to the stable blocks, which acted as relatively rigid structural units. Because the uranium deposits are related genetically to the Hudsonian tectonism, the regional control of the deposits whereby uranium mineralization is largely confined to the linear belts is reasonably resolved.

It is probable that during the Hudsonian orogeny, initial pitchblende mineralization followed the crystallization of uraninite transitionally. Since their formation, syngenetic deposits have remained 'closed' chemically, whereas pitchblende deposits have been re-worked or rejuvenated at several times by subsequent tectono-thermal events.

General suggestions for future exploration are given and a few specific exploration targets, based on structural reasoning, are described.
CONTENTS

INTRODUCTION .. 5
GENERAL AND ECONOMIC GEOLOGY .. 5
STRUCTURAL GEOLOGY, GEOCHRONOLOGY OF THE HUDSONIAN OROGEN, AND DISTRIBUTION OF URANIUM 7
SUGGESTIONS FOR FURTHER EXPLORATION 8
REFERENCES .. 9
APPENDIX I: List of the Deposits located on Map 112A 11
APPENDIX II: List of the Deposits located on Map 112B 13

ILLUSTRATIONS

MAP 112A: Location Map of Uranium Deposits in the Athabasca Region (in pocket)
MAP 112B: Location Map of Uranium Deposits in the Beaverlodge Area (in pocket)
MAP 112C: Structural Elements of the Athabasca Region (in pocket)

FIGURE 1: Location Map .. 4
FIGURE 2: Sketch map showing the possible westerly extension of the St. Louis fault .. 10

TABLE 1: Types of Deposits .. 6
FIGURE 1
LOCATION MAP

ATHABASCA REGION

ALBERTA

EDMONTON

NORTHWEST TERRITORIES

YELLOWKNIFE

PINE POINT

FORT SMITH

110°

104°

59°

URANUM CITY

ATHABASCA SANDSTONE

MANITOBA

LA RONDE

PRECAMBRIAN

FLIN FLON

LYNN LAKE

THOMPSON

SASKATCHEWAN

PRINCE ALBERT

REGINA

WINNIPEG

50 0 50 100
SCALE-MILES
INTRODUCTION

The Athabasca region is an important metallogenic province of uranium and contains numerous epigenetic vein-type pitchblende deposits, some of which are of economic proportions, as well as many syngenetic occurrences of uraninite in migmatitic and pegmatitic rocks. The location of the region within Saskatchewan is shown in Figure 1.

A detailed report, including descriptions of all known uranium occurrences together with a discussion of their regional distribution, lithological and structural control, mineralogy, and genesis is in preparation, and will probably be available within a year or so. In view of the recent revival in exploration activity for uranium this preliminary report is intended to present information that may be of immediate interest to the mining public. It includes a systematic listing and location maps of all uranium deposits known to the Saskatchewan Department of Mineral Resources and offers suggestions for further exploration in the region. In addition, the relation between regional structural geology, geochronology of the Hudsonian orogen, and localization of uranium is briefly discussed.

For convenience the deposits of the region are grouped into several main types based on their mineralogy and geological setting, and two of these types are sub-divided according to their economic potential (Table 1). The locations of all known deposits are shown on Maps 112A and 112B and a complete list of the deposits in Appendices I and II, provides a key for the location maps.

GENERAL AND ECONOMIC GEOLOGY

The region forms part of the Churchill province of the Canadian Shield and is underlain by a Precambrian sequence of metamorphosed and granitized rocks, the basement complex, characterized by a dominant northeasterly-trending "grain" imparted by the Hudsonian orogeny (about 1700-1800 m.y. ago). In places the peneplaned basement complex is overlain unconformably by Proterozoic cover rocks consisting of flat lying or gently folded, essentially clastic sequences. Diabase dykes, intruded about 1400-1500 m.y. ago, cut all rocks of the region.

The basement rocks are characteristically folded along northeast-trending axes and folds are mainly isoclinal or tight, although some open folds of large amplitude occur. Proterozoic rocks north of Lake Athabasca (the Martin Formation and Hale's Lower Athabasca Series) are folded in broad open folds with axial traces roughly parallel to those in the basement. In contrast, the Athabasca sandstone south of Lake Athabasca is generally flat lying.

Three prominent sets of faults, referred to as the late faults by Tremblay (1955), trend east, northeast, and northwest and transect all rocks of the region. In the basement complex, linear belts of mylonite and breccia, ranging from a few feet to several hundreds of feet in width, are commonly associated with the late faults and are believed to represent an earlier set of thrust faults. These have been named the early faults (op. cit.).

Two main types of uranium deposits occur in the region: vein-type deposits of pitchblende in faults or in subsidiary structures adjacent to faults; and syngenetic deposits of uraninite in pegmatitic,
A. PRIMARY DEPOSITS

1. Uraninite in country rock (6) e.g. Goldfields Uranium showing no. 49-TT-1.

2. Pegmatite Deposits
 (a) Lit-par-lit type (21) e.g. Charlebois Uranium, Row claims
 (b) Dyke-like pegmatites (11) e.g. Gwillim Lake Gold Mines, Bert claims
 (c) Pegmatites in migmatite zones (4) e.g. Camsell Portage pegmatite.

3. Pitchblende Deposits
 (a) Complex Mineralogy (pitchblende accompanied by Co-Ni arsenides and sulphides, Co-Ni-Pb selenides, or native elements)
 (i) Mines and properties with underground development (7) e.g. Consolidated Nicholson Mines
 (ii) Minor occurrences (9) e.g. Camdeck Mines, zone no. 4
 (b) Simple Mineralogy (pitchblende accompanied by pyrite, chalcopyrite, and galena)
 (i) Mines and properties with underground development (33) e.g. Rix Athabasca, Smitty Mine
 (ii) Deposits with high-grade potential or warranting further work (49) e.g. Baska, Dot claims, zone no. D19
 (iii) Minor occurrences (186) e.g. Amax Athabasca, showing no. 49-CC1-6

B. SECONDARY DEPOSITS

Autunite Deposits (1) e.g. Dee Exploration, Middle Lake showings

Table 1

<table>
<thead>
<tr>
<th>TYPES OF DEPOSITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(The numbers of each type of deposit in the region are shown in parentheses)</td>
</tr>
</tbody>
</table>
gneissic, and migmatitic rocks. Since pitchblende deposits are mainly associated with late faults, it was assumed by earlier workers that uranium mineralization must have taken place late in the geological history of the region. In contrast, it has been shown elsewhere (Beck, 1964) that pitchblende deposits were emplaced in thrust faults (now represented by bands of mylonite) at about 1800 m.y. ago during the Hudsonian orogeny. This initial pitchblende mineralization probably followed the crystallization of uraninite transitionally both in space and time. Since their formation, syn-genetic systems (the uraninite-bearing deposits) have remained 'closed' with low mobility of lead, but pitchblende deposits have been reworked or rejuvenated at several times by minor tectono-thermal events including downwarping of the basement complex prior to deposition of the cover rocks, folding and faulting of the cover rocks, intrusion of diabase, and late movement along faults; the latest reworking may have been as recent as 190 m.y. ago.

STRUCTURAL GEOLOGY, GEOCHRONOLOGY OF THE HUDSONIAN OROGEN, AND DISTRIBUTION OF URANIUM

On the basis of geological mapping, and aeromagnetic interpretation of un-mapped areas, the basement complex can be divided into two types of geological and structural environment: (1) areas referred to as stable blocks that largely exhibit a confused aeromagnetic pattern with only minor faulting and little or no mylonitization of the bedrock; and (2) areas of linear trends, referred to as linear belts, characterized by tight and isoclinal folding, intense faulting, brecciation, and mylonitization.

A lithological distinction also characterizes the two types of environment. Linear belts consist of a higher proportion of metasedimentary and metavolcanic rocks than the stable blocks, which are largely underlain by granitic and migmatitic rocks. Furthermore, granitic rocks in the stable block areas are mainly large batholithic replacement bodies of granodiorite-adamellite, whereas in the linear belts many of the plugs and sills of granodiorite-adamellite are accompanied by later intrusions of alkali granite.

Distribution of uranium deposits is distinctly controlled by regional structure. On comparison of the location maps of the deposits and the structural map of the region (Map 112C) it is seen that both the pitchblende and uraninite deposits are virtually restricted to the linear belts, and moreover, the uraninite deposits are more common at the peripheries of the linear belts or in parts of the linear belts where pitchblende deposits are relatively uncommon. Exceptions to this pattern are in the Beaver and Oldman Rivers area; the broad transition zone between the Beaverlodge linear belt and the Fond du Lac stable block, where both types of deposit are found; and in the Charlebois Lake area in the Eastern stable block, where there are numerous uraninite-bearing pegmatites.

A program of Rb-Sr whole-rock dating on selected granitic rocks of the Athabasca region is currently in progress at the University of Leeds, England. Results obtained to date indicate that the sill- and dyke-like granites and pegmatites of the linear belts were formed about 1820 m.y. ago, undoubtedly during the Hudsonian orogeny, and that two batholithic granitic bodies of the Fond du Lac stable block are probably pre-Hudsonian and were emplaced about 2200
m.y. ago. Although further isotope studies are required to define the age of the older granite emplacement more precisely, confirmation of two distinct ages of rocks in the Athabasca region, one formed during the Hudsonian orogeny and the other pre-Hudsonian, is provided by radiometric dating of rocks and minerals from the basement complex exposed in the northeastern part of Alberta (Baadsgaard et al. 1964). Furthermore, there is isotopic evidence for two ages of granite elsewhere in the Churchill province (Money, 1965, p. 9).

Although many more age determinations are required before the broad stratigraphic framework of this part of the Hudsonian orogen can be elucidated, available structural and geochronological data suggest that the stable blocks may be partly underlain by pre-Hudsonian assemblages. During the Hudsonian orogeny these assemblages acted as relatively rigid structural units (at least rigid enough to prohibit appreciable disturbance of rubidium and strontium isotopic ratios) in contrast to the linear belts, which were strongly folded and faulted and intruded by granite and pegmatite. Because the uranium deposits are genetically related to the Hudsonian granitization and metamorphism, the regional control of the deposits, whereby uranium mineralization is largely confined to the linear belts, is reasonably explained.

SUGGESTIONS FOR FURTHER EXPLORATION

If the foregoing assumptions regarding the geochronology of the structural units are valid, then on a regional scale, attention should clearly be focussed on the areas designated as linear belts. Most of the known showings are in the Beaverlodge linear belt, but the relative lack of mineralization in the Stony Rapids linear belt may partly be a reflection of the less intensive prospecting activity in that area. Since there is no apparent geological explanation for the relative lack of deposits there, further prospecting would be justified particularly in the vicinity of the major faults such as the Black Lake, Grease River, and Clut Lakes fault zones (Map 112C). This latter structure is a sinuous east-trending fault that may be compared with the St. Louis fault and, therefore, might warrant closer attention.

Intensive prospecting has been carried out in the central part of the Beaverlodge linear belt, particularly within a radius of about 20 miles from Beaverlodge Lake, and probably most of the surface showings have been found, but further conventional prospecting in outer parts of the belt might be profitable.

Furthermore, detailed work in the central part of the Beaverlodge linear belt, involving a re-evaluation of former diamond drill programs in the light of new structural data, and drilling parts of favourable structures not adequately tested, might extend known mineralized zones or lead to the discovery of new deposits. A few specific exploration possibilities of this type are discussed below together with relevant structural information:

1. There is now evidence to indicate that the ABC fault is a splay from the St. Louis fault and that probably the latter extends westwards across Beaverlodge Lake. It is therefore possible that the Crackingstone fault, which has a similar attitude to the St. Louis fault, is the westerly extension of the St. Louis fault. If this is the
case, the St. Louis fault probably underlies the north arm of Martin Lake and thus provides a potential ore-bearing structure with a strike length of approximately six miles (Figure 2). The most westerly part of the St. Louis fault proper that has been explored is near to the Eldorado townsite, where ore shoots have been located adjacent to the fault in both the basement complex and in the basal part of the overlying Martin Formation. Similar ore-bearing possibilities may be anticipated in the section of the fault between Eldorado and the Lake Cinch mine, but owing to the basin-like development of the Martin Formation in this area, initial exploration should be concentrated on the sectors immediately west of Eldorado and east of Lake Cinch mine where the Martin Formation is thinner. Moreover, before any exploratory drilling is attempted the location of the fault should be verified by geophysical methods.

(2) Several of the deposits in the western part of the Beaverlodge area (e.g. Lake Cinch and Rix-Leonard) are in northwest-trending tension fractures in the acute angle formed at the intersections of east and northeast-trending major faults. Similar structural settings that have not been adequately tested should be examined closely.

(3) Most of the orebodies in the Beaverlodge linear belt exhibit a well-defined plunge to the south or southwest yet the majority of potential ore-bearing structures were drilled as simple planar elements and, in consequence, narrow plunging orebodies would probably have been missed. Former drill results, particularly where a single drill hole in a line of holes intersected values, should be re-evaluated in this context.

REFERENCES
SKETCH MAP SHOWING THE POSSIBLE WESTERLY EXTENSION OF THE ST. LOUIS FAULT
APPENDIX I

LIST OF THE DEPOSITS LOCATED ON MAP 112A
(The grid location of each of the deposits on the map is noted in parentheses)

PEGMATITE DEPOSITS

Lit-par-lit-type
1. Anderson-McArthur showing (B5).
2. Anglo-Barrington Mines — Guppy claims (B6).
3. Anglo-Barrington Mines — Xmas and Canso claims (B6).
4. Charlebois Lake Uranium — Bell claims (B6).
5. Charlebois Lake Uranium — MC claims (B6).
6. Charlebois Lake Uranium — Mike claims (B6).
7. Charlebois Lake Uranium — Nuzone claims — David showing (B6).
8. Charlebois Lake Uranium — Nuzone claims — Narrows showing (B6).
9. Charlebois Lake Uranium — Row claims (B6).
10. Charlebois Lake Uranium — SK claims (B6).
11. Charlebois Lake Uranium — Sun claims (B6).
12. Concession ‘G’ showings (B5).
13. Consolidated Mining and Smelting — Art claims (B6).
14. Consolidated Mining and Smelting — Rapids claims (B6).
15. Dee Explorations — Corrigan showing (B6).
16. Dee Explorations — MLU claims (B6).
17. Dee Explorations — NC and Par claims (B6).
18. Fisher-Hayes showing (B5).
19. Holden showing (B6).
21. Spartan claims (B6).

Dyke-like pegmatites
25. Great West Uranium Mines — Fault claims (B3).
27. Goldfields Uranium — showing no. SS-129 (A2).

Pegmatites in migmatite zones
29. Lorado Mines — Viking Lake deposit (A2).
30. Magma Mines — Tryme claims (B4).
31. Nu-Age Uranium — Ram claims (B3).

URANINITE IN COUNTRY ROCK
32. Camsell Portage pegmatite (A1).
33. Goldfields Uranium — showing no. 49-TT-1 (A2).
34. Goldfields Uranium — showing no. SS-1 (A2).
35. Inland Resources — HU and HP claims — zone no. 3 (A2).

PITCHBLENDE DEPOSITS WITH SIMPLE MINERALOGY

Mines and properties with underground development
37. Nisto mine (B5).

Deposits with high-grade potential or warranting further work
38. Combined Mining Corporation — Mor claims (B3).
40. Goldfields Uranium — showing no. 50-TT-75 (A2).
41. New Mylamaque — Voy claims (A1).
42. Varmac Mines—FKR claims (B4).

Minor occurrences
43. Baska Uranium—Bob claims (A1).
44. Beta Gamma Mines — White Dog claims (B2).
45. Butch claims (B5).
46. Canroc Oils — Pitche claims (A2).
47. Combined Mining Corporation — Ma claims zone no. 1 (B3).
48. Delo claims (B2).
50. Gaitwin Explorations—Job claims (B3).
53. Goldfields Uranium — Ros claims (A2).
55. Great British Uranium Mines — Turner showing (B3).
57. Great West Uranium — Mac claims (A2).
58. Independence Mining — Pitchco claims (A2).
59. Jo claims (A1).
60. Keno Oils — Vic claims (B3).
61. LB claims (B2).
62. Murray claims (B3).
63. Tazin Mines — RL claims (B2).
64. Uranium Ridge — Urex claims (A1).

SECONDARY DEPOSITS

65. Dee Explorations — Middle Lake showings (B5).
APPENDIX II

LIST OF THE DEPOSITS LOCATED ON MAP 112B
(The grid location of each of the deposits on the map is noted in parentheses)

PEGMATITE DEPOSITS

Dyke-like pegmatites
1. Black Bay Uranium — Strand claims (B3).

Pegmatites in migmatite zones
2. Bailey Selburn Oil and Gas — WJ claims (C4).
3. Judella Uranium — Len and Key claims (D1).
4. Pitch-Ore Uranium — Orb claims zone no. 2 (C3).

URANINITE IN COUNTRY ROCK
5. Eldorado-Fish Hook Bay-Hacker zone (D8).
6. Rix Athabasca — showing no. 58 (C4).

PITCHBLENDE DEPOSITS WITH COMPLEX MINERALOGY

Mines and properties with underground development
7. Beaverlodge Uranium Mines — Bar 5-9 claims (B7).
10. Consolidated Nicholson Mines — No. 4 zone (D8).
11. Eldorado — Bolger deposit (B8).
12. Eldorado — Martin Lake mine (C6).
13. Pitch-Ore mine (C6).

Minor occurrences
15. Consolidated Nicholson Mines — no. 3 zone (E8).
16. Eldorado — Eagle area (B6).
17. Eldorado — showing no. 45-Jo-9 (E8).
18. Eldorado — showing no. 46-Jo-16 (D8).
19. Eldorado — Gil claims (E6).
19A Eldorado — Gil claims (E6).
20. Eldorado — Padgett Bay showing (B7).

PITCHBLENDE DEPOSITS WITH SIMPLE MINERALOGY

Mines and properties with underground development
22. Amax Athabasca — showing no. 50-CC1-61 (C5).
23. Baska Uranium — Dot claims — zone no. 103 (A7).
24. Black Bay Uranium — Murmac Bay (C7).
25. Cayzor mine (B5).
27. Consolidated Beta Gamma—Tena claims (C1).
28. Eldorado — Eagle mine (B7).
29. Eldorado — Fish Hook Bay — ‘B’ and ‘C’ zones (D8).
30. Eldorado — Main property — Ace-Fay mine (B7).
30A Eldorado — Main property — Ace-Fay mine (B7).
31. Eldorado—Main property—Verna mine (B8).
32. Gulch Mines — Gulch zone (E3).
33. Gunnar mine (F3).
34. Jesko-Car claims — showing no. 50-NN-31 (C3).
35. Lake Cinch mine (C5).
36. Lake Cinch — River zone (C5).
37. Lorado mine (D5).
38. Meta-Uranium mine (C7).
39. National Explorations — Pat claims — ‘C’ zone (B8).
40. National Explorations—Pat claims Keiller adit (B8).
41. Nesbitt Labine — ABC mine (B6).
42. Nesbitt Labine — ABC mine (B6).
43. Nesbitt Labine—Eagle mine (B7).
44. Pitch-Ore Uranium — Orb claims — zone no. 6A (A4).
45. Rix Athabasca—Smitty mine (B5).
46. Rix Athabasca — ‘62’ orebody (B5).
47. Rix Athabasca — Leonard mine (B5).
48. Rix Athabasca — no. 7 adit (C4).
49. Rix Athabasca — no. 10 adit (B5).
50. St. Michaels (Cadaret) (B5).
51. Strike Uranium mine (B7-B8).
52. Uranium Ridge — Pitche claims (D9).
Deposits with high-grade potential or warranting further work

53. Ad Astra — Reno claims (B8).
54. Amax Athabasca — Lake Cinch extension drilling (C5).
55. Amax Athabasca — showing no. 49-CC1-11 (C5).
56. Amax Athabasca — showing no. 50-CC1-31 (B5).
57. Amax Athabasca — showing no. 50-CC1-39 (B5).
58. Amax Athabasca — showing no. 50-CC1-40 (B5).
59. Amax Athabasca — showing no. 50-CC1-128 (C5).
60. Amax Athabasca — showing no. 50-CC1-128C (C5).
61. Aurora Yellowknife — CC2 concession (B6).
62. Aurora Yellowknife — Townend fault showings (A6).
63. Aurora Yellowknife — showing no. CC3-50-23 (A6).
64. Aurora Yellowknife — showing no. CC2-136 (B6).
65. Aurora Yellowknife — showing no. CC2-137 (B6).
66. Aurora Yellowknife — showing no. 50-CC2-146 (B5).
67. Azor Mines (B6).
69. Baska Uranium — Schmoo Lake (B8).
70. Camdeck Mines — zone no. 1 (A7).
71. Cayzor Mines — no. 31 zone (B5).
72. Comp claim — no. DD20 zone (A6).
73. Consolidated Beta Gamma — Chum claims — zone no. 6E (A5).
74. Eldorado — Fish Hook Bay — zone 'A' (D5-E5).
75. Eldorado — Fish Hook Bay — showing no. 45-Sh-10 (D8).
76. Eldorado — Gully zone (B7).
77. Eldorado — Hab claims (A8).
78. Eldorado — Mic showing (B7).
79. Elsie claims (E6).
80. Goldfields Uranium Mines — showing no. DD-10 (C4).
81. Goldfields Uranium Mines — showing no. 50-DD-36 (B5).
82. Goldfields Uranium Mines — showing no. 50-DD-97 (C4).
83. National Explorations (B8).
84. New Hosco — showing no. 60 (A5).
85. New Hosco — showing no. 70-75 (A5).
86. New Hosco — showing no. 87 (A5).
87. Pax Athabasca — Paul claims — zone no. 2 (B7).
88. Pax Athabasca — Paul claims — zone no. 3 (B7).
89. Pitch-Ore Uranium — Orb claims — zone no. 3 (C3).
90. Rix Athabasca — Chance Lake zone (B4).
91. Rix Athabasca — showing no. 49-CC1-4 (C4).
92. Rix Athabasca — showing no. 11A (B5).
93. Rix Athabasca — showing no. 55 (C4).
94. Rix Athabasca — showing no. 59 (C4).
95. Rix Athabasca — showing no. 111 (C4).
96. Scurry Rainbow — Stewart Island showing (G3).

Minor occurrences

97. AG claims (E8).
98. Alice claims (G2).
99. Amax Athabasca — Leadridge fault drilling (B5).
100. Amax Athabasca — Leadridge fault extension drilling (C5).
101. Amax Athabasca — showing no. 49-CC1-1 (C4).
102. Amax Athabasca — showing no. 49-CC1-6 (C4).
103. Amax Athabasca — showing no. 49-CC1-9 (C5).
104. Amax Athabasca — showing no. 49-CC1-10 (C5).
105. Amax Athabasca — showing no. 50-CC1-B11 (C5).
106. Amax Athabasca — showing no. 50-CC1-46 (C5).
107. Amax Athabasca — showing no. 50-CC1-97 (C5).
108. Amax Athabasca — showing no. 50-CC1-148 (C5).
109. Ameranium — Ike claims (D6).
110. American Canadian — 'GG' concession — showing no. 1A (A8).
111. Anuwon — Ideal claim (D5).
112. Anuwon — Whiz claims (C4).
112A. Anuwon — Whiz claims (D4).
113. Aurora Yellowknife — showing no. 44 (B5).
114. Aurora Yellowknife — showing no. 50-CC3-44 (A6).
115. Aurora Yellowknife — showing no. 128 (B5).
116. Aurora Yellowknife — Fredette River showing (B6).
117. Azor Mines (B6).
118. Azor Mines (B6).
119. Azor Mines (B6).
120. Bailey Selburn Oil and Gas — WJ claims (C4).
121. Basalt Uranium—Bug claims (B5).
122. Baska Uranium — Chuck claims (D8).
123. Baska Uranium — Chuck claims — showing no. G1 (E5).
124. Baska Uranium — DI claims (E3).
125. Baska Uranium — DI claims (E3).
129. Baska Uranium — Fish Lake (B8).
130. Baska Uranium — HW claims — zone no. 1 (B6).
131. Baska Uranium — HW claims — zone no. 7 (B6).
132. Baska Uranium — HW claims — zone no. 9 (B6).
133. Baska Uranium — HW claims — zone no. 11 (B6).
134. Baska Uranium — HW claims — zone nos. 21 and 22 (B6).
135. Beaverlodge Uranium—Bar claims (B7).
136. Big Jackpot — Bonus Hill zone (F2).
137. Big Jackpot — showing no. GB9 (E3).
138. Black Bay Uranium — Strand claims (B3).
139. Bluegrass Uranium—Hazel claims (C7).
140. Brunston Mining — Peg claims — zone no. 1 (C7).
141. Brunston Mining — Peg claims — zone no. 3 (C7).
142. Camdeck Mines—zone no. 2 (A7).
143. Camdeck Mines—zone no. 3 (B7).
144. Camdeck Mines—zone no. 5 (B7).
145. Camdeck Mines — zone no. 6 (A7 B7).
146. Camdeck Mines — Mickey Lake showing (B7).
149. Canada Pipelines — Steve claims (A7).
150. Canada Pipelines — Steve claims (B7).
151. Cayzor Mines — showing Azor no. 7 (B5).
152. Chimo Mines — YBY claims (F3).
153. Clix Athabasca showings (D5 D6).
153A. Clix Athabasca showings (E5).
153B. Clix Athabasca showings (E5).
153C. Clix Athabasca showings (E5).
154. Clix Athabasca showings (D5).
154A. Clix Athabasca showings (D5).
154B. Clix Athabasca showings (E5).
155. Commercial Minerals — Point claims (D1).
156. Comp claims — Compton zone (A6).
157. Crackingstone Mines showings (F2).
157A. Crackingstone Mines showings (F2).
158. Crackingstone Mines showings (F3).
159. Consolidated Beta Gamma — Chum claims — zone no. 3 (A5).
160. Consolidated Beta Gamma — Chum claims — zone no. 5 (A5).
161. Consolidated Beta Gamma — Chum claims — zone no. 6W (A5).
162. Consolidated Beta Gamma — Chum claims — zone no. 7 (B5).
163. Consolidated Beta Gamma — Chum claims—zone no. 8 (A5 B5).
164. Consolidated Beta Gamma — Chum claims — (A5).
165. ‘D’ claims (C1).
166. Eldorado — Don claims (A6).
167. Eldorado — Donaldson fracture zone (B5).
168. Eldorado — Eagle fracture zone (B7).
169. Eldorado — Emar claims — Donaldson Lake (B8).
170. Eldorado — Emar showing (B8).
171. Eldorado — Fish Hook Bay — showing no. 45-Jo-3 (D8).
172. Eldorado — Fish Hook Bay — showing no. 45-Jo-53 (D8).
173. Eldorado — Fish Hook Bay — showing no. 45-Jo-115 (D7).
174. Eldorado — Fish Hook Bay — showing no. 45-Sh-1 (E8).
175. Eldorado — Fish Hook Bay — showing no. 45-Sh-7 (D8).
176. Eldorado — Fish Hook Bay — showing no. 45-Sh-9 (D8).
177. Eldorado—Intermediate zone (B7).
178. Eldorado — Love zone (B8).
179. Eldorado — Tam north showing (B7).
180. Eldorado — Tam south showing (B7).
181. Emil claims (C3).
182. Gateway Uranium — Black Bay drilling (C5).
185. Goldfields Uranium — Heron fault showings (A5).
186. Goldfields Uranium — Lin fault showings (A5).
188. Goldfields Uranium — showing no. FF1-3 (A7).
189. Goldfields Uranium — showing no. FF1-4 (A7).
190. Goldfields Uranium — showing no. 50-DD-22 (C4).
191. Goldfields Uranium — showing no. 50-DD-25 (B4 C4).
192. Goldmaque Mines — Clix claims (F3).
193. Gulch Mines — Racu zone (E3).
194. Gunnar Mines — Arch 1-10 claims (F3).
195. Gunnar Mines — Arch 11-19 claims (F3).
196. Gunnar Mines — Ed no. 3 showing (F3).
197. Gunnar Mines — Ed no. 4 showing (F3).
198. Gunnar Mines — Mick claim (F3).
199. Gunnar Mines — Minor showing (F3).
200. Gwillim Mines — Hap claims — zone no. 1 (E5).
201. Gwillim Mines — Hap claims — zone no. 2 (E5).
203. Imperial Mining — Hyd claims — zone no. 1 (E5).
204. Iso Uranium — Ham claims (F3).
205. Jesko Uranium — Tr claims (D4).
206. Jim, Tom, Mike claims — Tom fault showing (A7).
207. Lake Cinch Mines — ‘B’ showing (C5).
208. Langley Bay Uranium—CC claims (F3).
209. Larum Mines — Bev claims (F3).
209A. Larum Mines — Bev claims (F3).
210. Maree Uranium (E4).
211. National Explorations (B8).
212. National Explorations—Pat claims (B8).
212A. National Explorations — Pat claims (B8).
212B. National Explorations — Pat claims (B8).
213. Nesbitt Labine — ABC property (B6 B7).
214. New Hosco—showing no. 61 (A5).
215. New Hosco—showing no. 72 (A6).
216. New Hosco—showing no. 76 (A5).
217. Nor’ranium Minerals — Cab claims (E7).
218. Parbec Mines — Jag claims (F3).
219. Pax Athabasca — Paul claims — zone no. 1 (B7).
220. Pitch-Ore Uranium — zone no. 5 (C2).
221. Pitch-Ore Uranium — zone no. 5A (C2).
222. Pitchvein — YK claims (D5).
222A. Pitchvein — YK claims (D5).
223. Polestar Mines—Axe claims (C5).
224. Pluton Uranium — Marg claims—zone no. 51 (A6).
225. Pluton Uranium — Marg claims—zone no. 59 (A6).
226. Radiore Uranium — zone no. B12 (B8).
227. Radiore Uranium — zone no. C1 (B8).
228. Radiore Uranium — Con no. 5 showing (D6).
229. Randex — Con claims (E6).
229A. Randex — Con claims (E6).
229B. Randex — Con claims (E6).
230. Rix Athabasca — showing no. 50-DD-13 (B5).
231. Rix Athabasca — showing no. 58 (C4).
232. Rix Athabasca — showing no. 63 (C4).
233. Rix Athabasca — showing no. 64 (C4).
234. Rix Athabasca — showing no. 50-DD1-94 (C4).
235. Rix Athabasca — showing no. 50-DD1-100 (C4).
236. Rix Athabasca — showing no. 104 (C4).
237. Rix Athabasca — showing no. 152 (C4).
238. Rix Athabasca — Rix ‘100’ claims (C4).
239. Steeleoy Mining — Ranium claims (D6).
240. St. Michaels Uranium — Fox claims (F4).
241. Strike Uranium Mines (B7).
242. Sudbury Contact — SO claims (D5).
243. Tazin Mines — Jim claims (E4).
244. Toff Uranium — Loc claims (C7 C8).
245. Uranium City Mining — Lucy claims (E3).
247. Zeke claims (D6).